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1 Basic Definitions

Topological spaces form the study of generalized geometry where things may be
stretched and squeezed and still thought of as the same object. The definition
comes from the study of metric spaces.

Definition 1.1 (Metric Space) A metric space is an ordered pair (X, d) where
X is a set and d : X ×X → R is a function such that for all x, y, z ∈ X:

d(x, y) ≥ 0 (Positivity)

d(x, x) = 0 (Definiteness)

d(x, y) = d(y, x) (Symmetry)

d(x, z) ≤ d(x, y) + d(y, z) (Triangle Inequality)

The function d is called a metric on X. The elements of X are usually referred
to as points. �

Example 1.1 The quintessential example is the standard metric on the real
line. Equip R with the function d : R× R→ R defined by:

d(x, y) = |x− y| (1)

That is, d is defined by the absolute value function. From real analysis we know
the absolute value function satisfies the triangle inequality (the proof is not
hard, either). Positive-definiteness and symmetry are almost immediate from
the definition as well. This is the distance between two real numbers on the real
line. �

Example 1.2 The Pythagoras theorem gives us a distance formula on RN .
Given two points x, y ∈ RN we may define:

d(x,y) =

√√√√N−1∑
n=0

(xn − yn)2 (2)

where xn and yn are the nth components of x and y, respectively. This is the
Euclidean metric on RN , also called the standard metric. �

Example 1.3 You can place different metrics on the same set. The Manhattan
metric on RN is defined by:

d(x, y) =

N−1∑
n=0

|xn − yn| (3)

That this is a metric can be proved by induction. The base case N = 1 is the
standard metric on R. �
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Example 1.4 A norm on a (real or complex) vector space V is a function
|| · || : V → R such that for all x, y ∈ V and (either real or complex) scalars a:

||x|| ≥ 0 (Positivity)

||x|| = 0⇔ x = 0 (Definiteness)

||ax|| = |a| · ||x|| (Factoring Scalars)

||x + y|| ≤ ||x||+ ||y|| (Triangle Inequality)

Norms define metrics (the induced metric):

d(x, y) = ||x− y|| (4)

The Euclidean metric on RN comes from the Euclidean norm on RN , which is
the usual Pythagorean length of vectors in N -space. �

Example 1.5 An inner product on a (real) vector space V is a function 〈·|·〉 :
V × V → R such that for all x, y, z ∈ V and a, b ∈ R:

〈x|y〉 = 〈y|x〉 (Symmetry)

〈ax + by|z〉 = a〈x|z〉+ b〈y|z〉 (Linearity)

x 6= 0⇒ 〈x|x〉 > 0 (Positive-Definiteness)

Inner-products define norms (the induced norm):

||x|| =
√
〈x|x〉 (5)

The Euclidean norm on RN is the norm induced by the Euclidean dot product:

〈x|y〉 = x · y =

N−1∑
n=0

xnyn (6)

The metric induced by the induced norm is the metric induced by the inner
product. �

Topological spaces generalize metric spaces by axiomatizing the properties of
open subsets. In a metric space this is very pictorial.

Definition 1.2 (Open Subsets (Metric Space)) An open subset in a metric
(X, d) is a subset U ⊆ X such that for all x ∈ U the is an ε > 0 such that for
all y ∈ U with d(x, y) < ε it is true that y ∈ U . That is, the open ball of radius
ε centered about x fits entirely inside U (Fig. 1). �

Theorem 1.1. The collection τ of all open subsets in a metric space (X, d)
satisfies the following:

∅ ∈ τ (The Empty Set is Open)

X ∈ τ (The Entire Space is Open)

O ⊆ τ ⇒
⋃
O ∈ τ (The Union of Open Sets is Open)

U ,V ∈ τ ⇒ U ∩ V ∈ τ (The Intersection of Two Open Sets is Open)

3



x ε

U

X

Figure 1: Open Subset in a Metric Space

The definition of a topological space is a mimicry of this theorem.

Definition 1.3 (Topological Space) A topological space is an ordered pair
(X, τ) such that X is a set and τ ⊆ P(X) (the power set of X) is such that:

∅ ∈ τ (The Empty Set is Open)

X ∈ τ (The Entire Space is Open)

O ⊆ τ ⇒
⋃
O ∈ τ (The Union of Open Sets is Open)

U ,V ∈ τ ⇒ U ∩ V ∈ τ (The Intersection of Two Open Sets is Open)

The sets U ∈ τ are called open and τ is called a topology on X. �

Closed sets are the complement of open sets.

Example 1.6 If X is any set then { ∅, X } is a topology on X. This is the
chaotic or indiscrete topology, also called the trivial topology. It states that the
only open subsets of X are the empty set and the whole space. �

Example 1.7 If X is any set, then P(X) is a topology on X. This is the
discrete topology. It states that every subset is open. �

Metrizable spaces are those where the topology is induced by a metric. Not
every topological space is induced by a metric. The trivial topology on a set
with at least two distinct points is an example of a non-metrizable topological
space. We can prove this by noting there is a topological property that this space
lacks that all metric spaces have. The easiest such property is the Hausdorff
one.

Definition 1.4 (Hausdorff Topological Space) A Hausdorff topological space
is a topological space (X, τ) such that for all distinct x, y ∈ X there are open
sets U , V ∈ τ such that x ∈ U , y ∈ V, and U ∩ V = ∅ (Fig. 2). �
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Figure 2: The Hausdorff Property

Theorem 1.2. Metrizable spaces are Hausdorff.

Proof. Given a metric space (X, d) with distinct x, y ∈ X, we have d(x, y) > 0.

Let ε = d(x, y)
2 , and U and V be the ε balls about x and y, respectively. Then

x ∈ U , y ∈ V, and from the triangle inequality we get U ∩ V = ∅.
Given the trivial topology on a set with at least two distinct points x, y ∈ X,
we see that this space is not Hausdorff since these points can not be separated
by open sets. Hence this space is not induced by a metric.

1.1 Subspaces

Given a topological space (X, τ) and a subset A ⊆ X we can get a new space
by considering the subspace topology.

Definition 1.5 (Subspace Topology) The subspace topology of a subset A ⊆ X
with respect to a topological space (X, τ) is the set τA defined by:

τA = {A ∩ U | U ∈ τ } (7)

That is, the set of all intersections of A with the open subsets of X. �

Theorem 1.3. The subspace topology is indeed a topology.

Proof. Given a topological space (X, τ) and A ⊆ X, we have A = A ∩X, and
since X ∈ τ , it is true that A ∈ τA. Similarly since ∅ ∈ τ and ∅ = A ∩ ∅, we
obtain ∅ ∈ τA. For unions we invoke the distributive law. A collection of open
subsets of τA are of the form U ∩A. Taking their union we get:

=
⋃
U

(U ∩A) =
(⋃
U
U
)
∩A (8)

since τ is a topology,
⋃
U U is open in τ , and hence this final set is open in τA.

Lastly, given U ∩A and V ∩A, we have:(
U ∩A

)
∩
(
V ∩A

)
=
(
U ∩ V

)
∩A (9)
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Since τ is a topology, U ∩ V is open in τ , and hence
(
U ∩ V

)
∩A is open in τA.

So τA is a topology on A.

Example 1.8 The unit N -sphere SN is the subset of RN+1 defined by:

SN = {x ∈ RN+1 | ||x|| = 1 } (10)

That is, the set of all points of unit length. The standard topology is the
subspace topology induced by the standard topology on RN+1, which is induced
by the Euclidean metric. �

2 Continuity

From calculus we know how to describe continuity. Minor perturbations in the
domain result in small changes in the range. To be precise, given a function
f : R → R and a point x0 ∈ R, we’ll claim that f is continuous here if for all
ε > 0 there is a δ > 0 such that for all |x− x0| < δ we have |f(x)− f(x0)| < ε.

This definition is adapted to metric spaces immediately.

Definition 2.1 (Continuous Function (Metric Space)) A continuous function
from a metric space (X, dX) to a metric space (Y, dY ) is a function f : X → Y
such that for all x0 ∈ X and for all ε > 0 there is a δ > 0 such that for all x ∈ X
with dX(x, x0) < δ we have dY

(
f(x), f(x0)

)
< ε. �

This makes use of real numbers and metrics, neither of which are available in
the general topological setting. We instead use open sets to define continuity.
This is motivated by the following.

Theorem 2.1. If (X, dX) and (Y, dY ) are metric spaces, and if f : X → Y is
a function, then f is continuous if and only if for all open V ⊆ Y , the pre-image
f−1[V] ⊆ X is open.

Proof. Suppose V ⊆ Y is open and f is continuous. If f−1[V] = ∅ we are done
since the empty set is open. If not, let x ∈ f−1[V]. Since V is open, there is
an ε > 0 such that the ε ball about y = f(x) is contained inside V. But f is
continuous, so there is a δ > 0 such that for all x0 ∈ X with dX(x, x0) < δ we
have dY

(
f(x), f(x0)

)
< ε. But this implies x0 ∈ f−1[V]. That is, the δ ball

about x is a subset of f−1[V], and hence this set is open.

In the other direction, let x ∈ X and ε > 0 be given. Let V be the ε ball about
y = f(x). Since this is open, f−1[V] is open. But then there is a δ > 0 such
that the δ ball about x is contained within f−1[V]. But then for all x0 ∈ X such
that dX(x, x0) < δ, we have dY

(
f(x), f(x0)

)
< ε. Hence f is continuous.

Topological spaces do have a notion of open sets, meaning we can take this
theorem and turn it into a definition.
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Definition 2.2 (Continuous Function (Topological Space)) A continuous func-
tion from a topological space (X, τX) to a topological space (Y, τY ) is a function
f : X → Y such that for all V ∈ τY it is true that f−1[V] ∈ τX . �

Example 2.1 If (X, τ) is any topological space, if (Y, τY ) is the indiscrete
topological space on Y (τY = { ∅, Y }), and if f : X → Y is any function, then
f is continuous. The only open sets to check are ∅ and Y . But f−1[∅] = ∅,
which is open, and f−1[Y ] = X, which is also open. So f is continuous. �

Example 2.2 If (Y, τ) is any topological space, if (X, P(X)) is the discrete
topological space on X, and if f : X → Y is any function, then f is continuous.
Regardless of the open sets V ∈ τ , we have f−1[V] ⊆ X ∈ P(X), which is open,
so f is continuous. �

2.1 Category Theory

A small rant, I’m not a fan of category theory. Any subject that requires proper
classes is, to me, a fiction. Nevertheless the language can at times be helpful,
pedagogically. The discrete and indiscrete topologies are such examples where
this language can be useful. A category C is a thing (almost never a set, maybe
not even class, pending on who you ask) consisting of:

� A class obj(C) (perhaps proper) of objects.

� A class hom(C) (again, perhaps proper) of arrows between objects.

� A class function dom : hom(C)→ obj(C) called the domain.

� A class function cod : hom(C)→ obj(C) called the codomain.

� A composition operator hom(A, B) × hom(B, C) → hom(A, C) for all
three objects A, B, C. Here hom(A, B) denotes the subclass of hom(C)
of arrows f such that dom(f) = A and cod(f) = B.

� Associativity holds: (f ◦ g) ◦ h = f ◦ (g ◦ h) where ◦ is the composition
operator.

� For all objects X there is an identity arrow idX : X → X such that for
every arrow f with dom(f) = X we have f ◦ idX = f and for every arrow
g with cod(f) = X we have idX ◦ g = g.

Given two categories C and D a functor F is a thing (often called a mapping,
but not in the sense of set theory) such that:

� For every object X in obj(C) there is an object F (X) in obj(D).

� For every arrow f in hom(C) there is an arrow F (f) in hom(D) such that
dom(F (f)) = F (dom(f)) and cod(F (f)) = F (cod(f)).

� For each X in obj(C) the identity arrow is preserved, F (idX) = idF (X).
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� For all f and g in hom(C), composition is preserved, F (f◦g) = F (f)◦F (g).

A small category is a category C where obj(C) and hom(C) are sets (not proper
classes). The study of small categories can be done in ZFC entirely without
proper classes. Groupoids, which appear in topology, geometry, and analysis,
are small categories in which all arrows are invertible (have reverse arrows).
Locally small categories are categories C where for all objects A, B in obj(C)
the subclass hom(A, B) is a set.

Example 2.3 The category Set has as objects the (proper class) of all sets.1

The arrows are just functions. Every set X has an identity function idX : X →
X, and the composition of functions is associative. Set is locally small. Given
two sets A, B, the set of all functions F(A, B) from A to B is provably a set
within the framework of ZFC.2 �

Example 2.4 The category Top has as objects the (proper class)3 of all topo-
logical spaces. The arrows are continuous functions. This category is also locally
small, given (X, τX) and (Y, τY ), the collection C

(
(X, τX), (Y, τY )

)
of all con-

tinuous functions f : X → Y is a set, being a subset of the set F(X, Y ) of all
functions f : X → Y . �

Example 2.5 The category Grp has as objects the (proper class)4 of all groups.
The arrows are group homomorphisms. Grp is locally small since the collection
of all group homomorphisms ϕ : G→ H is a subset of F(G, H). �

I know of no examples of categories that are not locally small. After some
digging I found the category of spans, but I don’t know what these are. Some
claim there is a category Cat of all categories, but that just sounds like Russell’s
paradox waiting to happen.

In a locally small category, the subclasses hom(A, B) are sets, so we call them
homsets. Given two locally small categories C and D, two objects X, Y in
obj(C), and a functor F : C → D, we get a function (an actual function from
set theory) FX,Y : hom(X, Y ) → hom

(
F (X), F (X)

)
. F is called faithful if

FX,Y is injective for all objects X and Y . It is called full if FX,Y is surjective
for all objects X and Y .

Example 2.6 The functor F : Top → Set defined by F
(
(X, τ)

)
= X for

objects and F (f) = f for arrows (a continuous function is a function, after
all) is faithful. Given two topological spaces (X, τX) and (Y, τY ) the function
FX,Y : C

(
(X, τX), (Y, τY )

)
→ F(X, Y ), which is FX,Y (f) = f , is injective,

but in general it is not surjective. It is not surjective since there may be functions
f : X → Y that are not continuous. F is called the forgetful functor. It can be
similarly defined for Grp. �

1See Russell’s paradox for why this is not a set.
2Using the ordered pair definition of function, F(A, B) is a subset of P

(
P(A×B)

)
.

3Every set has a corresponding topological space, the discrete topology. Intuitively there
are as many sets as there are topological spaces, so the collection of all topological spaces is
not a set.

4For every set, there is a group. This is equivalent to axiom of choice.
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Figure 3: Free Object in Topology

A concrete category is a locally small category C with a faithful functor U :
C → Set. Top and Grp with the forgetful functor form concrete categories.
A free object from a set X in a concrete category (C, U) is an object F (X)
in obj(C) with an injective function α : X → U

(
F (X)

)
with the following

property. Given any object Y in obj(C) and any function f : X → U(Y ) there
is a unique arrow f̃ : F (X) → Y such that f̃ = U(f) ◦ α. In other words, the
diagram in Fig. 3 is commutative.

Let’s rephrase this in the language of topology. We have a set X and we want a
topological space F (X) with an injective function α : X → U

(
F (X)

)
such that

for any topological space (Y, τY ) and any function f : X → Y there is a unique
continuous function f̃ : F (X)→ (Y, τY ) such that f = U(f̃) ◦ α.

We’ve seen this already. Define U
(
(X, τ)

)
= X (the forgetful functor), F (X) =(

X, P(X)
)

(the discrete topology), and let α : X → X be the identity α = idX .
Given any topological space (Y, τY ) and any function f : X → Y , the unique
continuous function is f̃ = f .

To summarize, the discrete topology is the free object in the category Top. Thus
the discrete topology is analogous to the free group in algebra. The underlying
set X acts as a basis for the topological space, just like generators act as a basis
for free group. This is also similar to bases which are used to generate vector
spaces.

The cofree object flips all the arrows. Given a set X we want a topological space
C(X) and an injective function α : X → U

(
C(X)

)
such that for any space

(Y, τY ) and any function f : Y → X, there is a unique continuous function
f̃ : (Y, τY )→ C(X) such that f = α ◦ U(f̃).

We’ve seen this too. Let U be the forgetful functor, and define C(X) =
(X, { ∅, X }). The injective function α : X → X is once again the identity,
α = idX . Then given any topological space (Y, τY ) and any function f : Y → X,
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Figure 4: Cofree Object in Topology

the unique continuous function that does the trick is f̃ = f (See Fig. 4). That
is, the cofree object in Top is the indiscrete topology.

2.2 Homeomorphisms

The arrows in category theory are called morphisms. Given a category C,
two objects A, B in obj(C), and an arrow f : A → B, an inverse is an arrow
g : B → A such that the composition operations f ◦g and g◦f yield the identity
morphism. Isomorphisms are morphisms that have inverses.

Example 2.7 In Set the morphisms are just functions. The invertible functions
are precisely those that are bijective. That is, the isomorphisms in Set are
bijections. �

Example 2.8 In Grp the morphisms are group homomorphisms. A bijective
group homorphism automatically yields a group homomorphism for the inverse.
The isomorphisms in Grp are bijective group homomorphisms, also called group
isomorphisms. �

Example 2.9 In VecR, the category of real vector spaces, the morphisms are
linear transformations. Bijective linear transformations have linear inverses, so
the isomorphisms in VecR are just bijective linear transformations. �

In topology the morphisms are continuous functions. Unlike the aforementioned
algebraic structures, bijective continuous functions need not yield continuous
inverses.

Example 2.10 Consider the circle S1 and half-open interval [0, 1), both with
their standard subspace topologies. The function ϕ : [0, 1)→ S1 defined by:

ϕ(t) =
(

cos(2πt), sin(2πt)
)

(11)

is continuous (since it is continuous in both components) and bijective, but the
inverse is not continuous. The inverse function creates a rip at the point (1, 0)
(you can prove this using a ε− δ argument since these are metric spaces). �
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Figure 5: Categorical Diagram for Products in Topology

The isomorphisms in topology are continuous bijective functions with continuous
inverses. These are given a name.

Definition 2.3 (Homeomorphism) A homeomorphism from a topological space
(X, τX) to a topological space (Y, τY ) is a continuous bijective function f : X →
Y such that f−1 : Y → X is continuous. �

Example 2.11 Equip R with the Euclidean topology. The function f(x) = x3

is continuous and bijective, and the inverse f−1(x) = x1/3 is continuous as well,
meaning f is a homeomorphism. A homeomorphism from a space to itself is
sometimes called an autohomeomorphism. �

Definition 2.4 (Open Mapping) An open mapping from a topological space
(X, τX) to a topological space (Y, τY ) is a function f : X → Y such that for all
U ∈ τX it is true that f [U ] ∈ τY . �

Open mappings need not be continuous, and continuous functions do not need
to be open mappings. When we do have both, we’re not far from a homeomo-
prhism.

Theorem 2.2. If (X, τX) and (Y, τY ) are topological spaces, and if f : X → Y
is a function, then f is a homeomorphism if and only if it is a continuous
bijective open mapping.

2.3 Product Spaces

We need to discuss product spaces in order to talk about homotopy. Products
in topology are defined in one of two ways. The first, and perhaps more natural,
way is by generating the topology. Given two spaces (X, τX) and (Y, τY ), we
form the product space (X × Y, τX×Y ) by looking at the products of open sets
in τX and τY . The collection of all such sets is not usually a topology, so we
define τX×Y to be the smallest topology such that U ×V ∈ τX×Y for all U ∈ τX
and V ∈ τY .

Definition 2.5 (Product Topological Space) The product of two topological
spaces (X, τX) and (Y, τY ) is the space (X × Y, τX×Y ) where τX×Y is the

11



Figure 6: Torus as a Product of Circles

smallest topology that contains the set:

τ̃X×Y = {U × V | U ∈ τX and V ∈ τY } (12)

That is, the topology generated by the product of open sets. �

This, to me, is the more intuitive definition. It generalizes to finite products by
induction. Infinite products have the issue of choosing the product or the box
topologies, see my notes for Math 54. We’ll be mostly concerned with finite
products in this course.

The alternate definition is categorical. The use is that it has the same definition
for the product of groups, vector spaces, sets, etc. For the product of sets we
have the canonical projections π1 : X1 ×X2 → X1 defined by π1(x1, x2) = x1,
and similarly for π2. The product topological space is defined by the object
in Top with the following property. Given any topological space (Y, τY ), and
any two continuous functions f1 : Y → X1 and f2 : Y → X2, there is a unique
continuous function f : Y → X1 ×X2 that makes Fig. 5 commute.

This says that to check the continuity of f : Y → X1 × X2 it is sufficient to
check that the components of f are continuous.

Example 2.12 The function f : R→ R3 defined by f(t) = (t, t2 exp(t), cos(t2))
is continuous. Why? We will not be looking at the pre-image of open sets, and
even ε−δ proofs look tedious here. But each of the components are continuous,
so we automatically know that function itself is continuous. �

One way of thinking of product spaces is by taking a copy of X1 and attaching
it to every point of X2 (or vice-versa). This is most easily visualized with the
torus, T = S1 × S1 (See Fig. 6).

2.4 Homotopy and Homotopy Equivalence

A notion weaker than homeomorphism, but equally useful, is homotopy equiv-
alence. It is defined in terms of homotopy, which is the idea of stretching
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[0, 1]

Y
f

g

H

Figure 8: Straight-Line Homotopy

continuous functions in a topological space.

Definition 2.6 (Homotopy) A homotopy between continuous function f, g :
X → Y from a topological space (X, τX) to a topological space (Y, τY ) is a
continuous functions H : X× [0, 1] :→ Y (with respect to the subspace topology
on [0, 1] and the product topology on X × [0, 1]) such that H(x, 0) = f(x) and
H(x, 1) = g(x) for all x ∈ X. �

This is shown pictorially in Fig. 7.

Example 2.13 Given any two continuous functions f, g : RM → RN , the
straight-line homotopy is the function H : RM × [0, 1]→ RN defined by:

H(x, t) = (1− t) f(x) + t g(x) (13)

This is continuous, being the sum of continuous functions. Plugging in t = 0 we
get H(x, 0) = f(x), and t = 1 yields H(x, 1) = g(x). So f and g are homotopic,
and H is such a homotopy. �

The straight line homotopy is shown in Fig. 8 for two curves in a subspace
Y ⊆ R2.

Homotopy is used to define homotopy equivalence which is a weaker form of
equivalence for topological spaces. It is defined using homotopy inverses.

Definition 2.7 (Homotopy Inverse) A homotopy inverse of a continuous func-
tion f : X → Y from a topological space (X, τX) to a space (Y, τY ) is a
continuous function g : Y → X such that g ◦ f is homotopic to idX and f ◦ g is
homotopic to idX . �
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Definition 2.8 (Homotopy Equivalence) A homotopy equivalence from a topo-
logical space (X, τX) to a topological space (Y, τY ) is a continuous function
f : X → Y such that there exists a homotopy inverse g : Y → X for f . �

Theorem 2.3. A homeomorphism is a homotopy equivalence.

Proof. A homeomorphism f : X → Y has the property that f−1 is continuous
and hence f ◦ f−1 is equal to idX , not just homotopy equivalent. Similarly,
f−1 ◦ f = idY . So f is a homotopy equivalence.

This theorem does not reverse.

Example 2.14 RN is homotopy equivalent to a one-point space { 0 } (There
is only one topology on a one-point space, τ =

{
∅, { 0 }

}
). The homotopy

equivalence f : RN → { 0 } is the only function that exists, f(x) = 0. The
homotopy inverse g : { 0 } → RN can be any function you like, but let’s pick
g(0) = 0 to make things simple. The composition f ◦g is the identity on { 0 }, so
it is certainly homotopic to the identity. Going the other way, g◦f is homotopic
to the identity on RN . Define H by:

H(x, t) = tx (14)

H(x, 0) is the function g◦f , and H(x, 1) is the identity. This is the straight-line
homotopy we’ve seen before. �

RN is an example of a contractible space.

Definition 2.9 (Contractible Topological Space) A contractible topological
space is a space (X, τ) that is homotopy equivalent to a one-point space. �

We saw that every continuous function from RM to RN is homotopy equivalent
via the straight-line homotopy. The real culprit behind this is contractibility.

Theorem 2.4. If (X, τX) is a topological space, if (Y, τY ) is contractible, and
if f, g : X → Y are continuous, then they are homotopy equivalent.

Proof. We can exclude the case of X or Y being empty as trivial. Let y ∈ Y .
There is only one one-point space, so { y } with the subspace topology is a
one point space. Since (Y, τY ) is contractible, there is a homotopy equivalence
α : Y → { y } and a homotopy inverse β : { y } → Y . Let H be a homotopy
between idY and β ◦ α. Then G : X × [0, 1]→ Y defined by:

G(x, t) =

{
H
(
f(x), 2t

)
, 0 ≤ t ≤ 1

2

H
(
g(x), 2− 2t

)
, 1

2 ≤ t ≤ 1
(15)

is continuous by the pasting-lemma since H
(
f(x), 1

)
= H

(
g(x), 1

)
= β(y). G

is thus a homotopy between f and g.

You can get a different category out of topology. The objects are still topological
spaces, but the arrows are equivalent classes of continuous functions under the
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equivalence relation of homotopic. Isomorphisms are then equivalence classes of
homotopy equivalences. Two topological spaces are then considered the same if
they are homotopy equivalent. This allows a lot more squooshing of the space
(RN is homotopy equivalent to a single point but certainly not homeomorphic).

3 Compactness and Connectedness

I think that was more than enough category theory for a while. Let’s return to
simpler point-set language and review some more topological ideas.

3.1 Compact Spaces

Definition 3.1 (Compact Topological Space) A compact topological space is
a topological space (X, τ) such that for every open over (a set O ⊆ τ such that⋃O = X) there is a finite subset ∆ ⊆ O that covers X. �

Theorem 3.1 (Heine-Borel Theorem). A subset C ⊆ RN is compact if and only
if C is closed and bounded (with respect to the Euclidean metric).

Theorem 3.2 (Generalized Heine-Borel Theorem). A subset C ⊆ X of a metric
space is compact if and only if it is closed and totally-bounded.

Both of these theorems were proved in detail in Math 54. We’ll make frequent
use of them.

3.2 Connected Spaces

There are several notions of a space being connected, and in a course on planar
topology it is essential to note the differences. The simplest notion of connect-
edness uses open sets and describes how to disconnect a space.

Definition 3.2 (Disconnected Topological Space) A disconnected topological
space is a topological space (X, τ) such that there exist two disjoint non-empty
open subsets U ,V ⊆ τ such that U ∪ V = X. �

Definition 3.3 (Connected Topological Space) A connected topological space
is a topological space that is not disconnected. �

Stronger than connectedness is the notion of path connected.

Definition 3.4 (Path Connected Topological Space) A path connected topo-
logical space is a topological space (X, τ) such that for all x, y ∈ X there is a
continuous path γ : [0, 1]→ X such that γ(0) = x and γ(1) = y. �

Theorem 3.3. If (X, τ) is a path connected topological space, then it is con-
nected.

Proof. Suppose not. Then there are two non-empty disjoint open subsets U ,V ⊆
X such that U ∪ V = X. Since they are non-empty, there are points x ∈ U and
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U V

Figure 9: A Disconnected Topological Space

y ∈ V. But (X, τ) is path connected, so there is a continuous path γ : [0, 1]→ X
such that γ(0) = x and γ(1) = y. Since γ is continuous, and since U and V
are open, γ−1[U ] and γ−1[V] are open. But these subsets are also disjoint and
non-empty, meaning [0, 1] is disconnected, but it is not, a contradiction. So
(X, τ) is connected.

One more stronger notion.

Definition 3.5 (Arc Connected Topological Space) An arc connected topolog-
ical space is a topological space (X, τ) such that for all x, y ∈ X there is an
injective continuous path γ : [0, 1]→ X such that γ(0) = x and γ(1) = y. �

Every path connected Hausdorff space is arc connected. This will take a bit of
work to prove but many of the central ideas of planar topology are involved.
We’ll be talking a lot about arc connected spaces when we discuss space filling
curves.

4 More Topological Properties

Lastly, a very brief review of some more properties covered in Math 54.

4.1 Separation Properties

Definition 4.1 (Fréchet Topological Space) A Fréchet topological space, also
called a T1 space, is a topological space (X, τ) such that for all distinct x, y ∈ X
there are open sets U ,V ∈ τ such that x ∈ U , x /∈ V, and y ∈ V, y /∈ U
(Fig. 10). �

Definition 4.2 (Regular Topological Space) A regular topological space is a
space (X, τ) such that for all x ∈ X and for all closed C ⊆ X with x /∈ C there
exist disjoint open subsets U ,V ∈ τ such that x ∈ U and C ⊆ V (Fig. 11). �

Definition 4.3 (Normal Topological Space) A normal topological space is a
space (X, τ) such that for all disjoint closed sets C,D ⊆ X there exist disjoint
open subsets U ,V ∈ τ such that C ⊆ U and D ⊆ V (Fig. 12). �
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Figure 10: The Fréchet Condition for Topological Spaces
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Figure 11: The Regular Condition for Topological Spaces
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Figure 12: The Normal Condition for Topological Spaces
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4.2 Countability Properties

Definition 4.4 (Base (Topology)) A base for a topology τ on a set X is a
subset B ⊆ τ such that

⋃B = X (B is an open cover), and for all U ,V ∈ B, and
for all x ∈ U ∩ V, there is a W ∈ B such that x ∈ W and W ⊆ U ∩ V. �

Example 4.1 The set of all open intervals (a, b) ⊆ R form a basis for the
Euclidean topology on the real line. �

Definition 4.5 (Second Countability) A second countable topological space is
a topological space (X, τ) such that there exists a countable base B for τ . �

Example 4.2 The set of all open intervals (p, q) with rational endpoint, p, q ∈
Q, forms a countable basis for the Euclidean topology on the real line. This
shows that R is second countable. �

Theorem 4.1 (Urysohn’s Metrization Theorem). If (X, τ) is a regular Haus-
dorff topological space that is second countable, then it is metrizable. That is,
there is some metric d on X that induces τ .
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